A/B Testing

How to Segment A/B Test Results to Find Gold

You run an A/B test, and it’s a winner. Or maybe it’s flat (no difference in performance between variations). Does it mean that the treatments that you tested didn’t resonate with anyone? Probably not.

If you target all visitors with the A/B test, it merely reports overall results – and ignores what happens in a portion of your traffic, in segments.

Keep reading »

How to Analyze Your A/B Test Results with Google Analytics

A/B testing tools like Optimizely or VWO make testing easy, and that’s about it. They’re tools to run tests, and not exactly designed for post-test analysis. Most testing tools have gotten better at it over the years, but still lack what you can do with Google Analytics – which is like everything. Keep reading »

Google Optimize

Chances are, you’ve heard of Google Optimize by now. It’s Google’s solution for A/B testing and personalization. It launched in beta last year, which left optimizers around the world waiting in line to try it out. Now that it’s out of beta, you can give it a try without the wait.

But what can you expect? How do you configure it properly? How do you run your first experiment?

Keep reading »

16 Ecommerce A/B Test Ideas Backed by UX Research

Nothing works all the time on all sites. That’s why we test in the first place; to let the data tell us what is actually working.

That said, we have done quite a bit of user experience on ecommerce sites and have seen some trends in terms of what generates positive experiences from a customer perspective.

This post will outline 16 A/B test ideas based on that data.

Keep reading »

UX Research and A/B Testing

A/B testing is common practice and it can be a powerful optimization strategy when it’s used properly. We’ve written on it extensively. Plus, the Internet is full of “How We Increased Conversions by 1,000% with 1 Simple Change” style articles.

Unfortunately, there are experimentation flaws associated with A/B testing as well. Understanding those flaws and their implications is key to designing better, smarter A/B test variations.

Keep reading »

The Experiment Canvas: A Better Way to Plan Tests

I have been part of some the best conversion optimization teams in the world, and they seem to have an intuitive sense on how to run the best experiments. People that are involved in these teams share a similar mindset.

I wanted to try to make this a process, one that could teach any organization how to run better experiments. I wanted to try to make this mindset more explicit in a way that is fun to use.

There’s no rocket science that follows, but this framework may well help your team drive a more efficient optimization culture.

Keep reading »